\(\int \frac {f+g x}{(d+e x) (a+b x+c x^2)^{3/2}} \, dx\) [881]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 187 \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \left (b c d f-b^2 e f+2 a c e f-2 a c d g+a b e g+c (2 c d f+2 a e g-b (e f+d g)) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}+\frac {e (e f-d g) \text {arctanh}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right )^{3/2}} \]

[Out]

e*(-d*g+e*f)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(a*e^2-b*d*
e+c*d^2)^(3/2)-2*(b*c*d*f-b^2*e*f+2*a*c*e*f-2*a*c*d*g+a*b*e*g+c*(2*c*d*f+2*a*e*g-b*(d*g+e*f))*x)/(-4*a*c+b^2)/
(a*e^2-b*d*e+c*d^2)/(c*x^2+b*x+a)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {836, 12, 738, 212} \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=\frac {e (e f-d g) \text {arctanh}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{\left (a e^2-b d e+c d^2\right )^{3/2}}-\frac {2 \left (c x (2 a e g-b (d g+e f)+2 c d f)+a b e g-2 a c d g+2 a c e f+b^2 (-e) f+b c d f\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )} \]

[In]

Int[(f + g*x)/((d + e*x)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*(b*c*d*f - b^2*e*f + 2*a*c*e*f - 2*a*c*d*g + a*b*e*g + c*(2*c*d*f + 2*a*e*g - b*(e*f + d*g))*x))/((b^2 - 4
*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[a + b*x + c*x^2]) + (e*(e*f - d*g)*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/
(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(c*d^2 - b*d*e + a*e^2)^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (b c d f-b^2 e f+2 a c e f-2 a c d g+a b e g+c (2 c d f+2 a e g-b (e f+d g)) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {2 \int -\frac {\left (b^2-4 a c\right ) e (e f-d g)}{2 (d+e x) \sqrt {a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )} \\ & = -\frac {2 \left (b c d f-b^2 e f+2 a c e f-2 a c d g+a b e g+c (2 c d f+2 a e g-b (e f+d g)) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}+\frac {(e (e f-d g)) \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2} \\ & = -\frac {2 \left (b c d f-b^2 e f+2 a c e f-2 a c d g+a b e g+c (2 c d f+2 a e g-b (e f+d g)) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {(2 e (e f-d g)) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{c d^2-b d e+a e^2} \\ & = -\frac {2 \left (b c d f-b^2 e f+2 a c e f-2 a c d g+a b e g+c (2 c d f+2 a e g-b (e f+d g)) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}+\frac {e (e f-d g) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.06 \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=\frac {-2 b^2 e f+2 b (a e g-c e f x+c d (f-g x))+4 c (-a d g+c d f x+a e (f+g x))}{\left (b^2-4 a c\right ) \left (-c d^2+e (b d-a e)\right ) \sqrt {a+x (b+c x)}}-\frac {2 e \sqrt {-c d^2+b d e-a e^2} (-e f+d g) \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{\left (c d^2+e (-b d+a e)\right )^2} \]

[In]

Integrate[(f + g*x)/((d + e*x)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*b^2*e*f + 2*b*(a*e*g - c*e*f*x + c*d*(f - g*x)) + 4*c*(-(a*d*g) + c*d*f*x + a*e*(f + g*x)))/((b^2 - 4*a*c)
*(-(c*d^2) + e*(b*d - a*e))*Sqrt[a + x*(b + c*x)]) - (2*e*Sqrt[-(c*d^2) + b*d*e - a*e^2]*(-(e*f) + d*g)*ArcTan
[(Sqrt[c]*(d + e*x) - e*Sqrt[a + x*(b + c*x)])/Sqrt[-(c*d^2) + e*(b*d - a*e)]])/(c*d^2 + e*(-(b*d) + a*e))^2

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(444\) vs. \(2(177)=354\).

Time = 0.70 (sec) , antiderivative size = 445, normalized size of antiderivative = 2.38

method result size
default \(\frac {2 g \left (2 c x +b \right )}{e \left (4 a c -b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}+\frac {\left (-d g +e f \right ) \left (\frac {e^{2}}{\left (e^{2} a -b d e +c \,d^{2}\right ) \sqrt {\left (x +\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}-\frac {\left (b e -2 c d \right ) e \left (2 c \left (x +\frac {d}{e}\right )+\frac {b e -2 c d}{e}\right )}{\left (e^{2} a -b d e +c \,d^{2}\right ) \left (\frac {4 c \left (e^{2} a -b d e +c \,d^{2}\right )}{e^{2}}-\frac {\left (b e -2 c d \right )^{2}}{e^{2}}\right ) \sqrt {\left (x +\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}-\frac {e^{2} \ln \left (\frac {\frac {2 e^{2} a -2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (e^{2} a -b d e +c \,d^{2}\right ) \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}\right )}{e^{2}}\) \(445\)

[In]

int((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*g/e*(2*c*x+b)/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)+(-d*g+e*f)/e^2*(1/(a*e^2-b*d*e+c*d^2)*e^2/((x+d/e)^2*c+(b*e-2*
c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)-(b*e-2*c*d)*e/(a*e^2-b*d*e+c*d^2)*(2*c*(x+d/e)+(b*e-2*c*d)/e)/(4
*c*(a*e^2-b*d*e+c*d^2)/e^2-(b*e-2*c*d)^2/e^2)/((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2
)-1/(a*e^2-b*d*e+c*d^2)*e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x+d/e
)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e)
))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 810 vs. \(2 (177) = 354\).

Time = 2.95 (sec) , antiderivative size = 1663, normalized size of antiderivative = 8.89 \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*(((a*b^2 - 4*a^2*c)*e^2*f - (a*b^2 - 4*a^2*c)*d*e*g + ((b^2*c - 4*a*c^2)*e^2*f - (b^2*c - 4*a*c^2)*d*e*g
)*x^2 + ((b^3 - 4*a*b*c)*e^2*f - (b^3 - 4*a*b*c)*d*e*g)*x)*sqrt(c*d^2 - b*d*e + a*e^2)*log((8*a*b*d*e - 8*a^2*
e^2 - (b^2 + 4*a*c)*d^2 - (8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt
(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^
2 + 2*d*e*x + d^2)) + 4*sqrt(c*x^2 + b*x + a)*((b*c^2*d^3 - 2*(b^2*c - a*c^2)*d^2*e + (b^3 - a*b*c)*d*e^2 - (a
*b^2 - 2*a^2*c)*e^3)*f - (2*a*c^2*d^3 - 3*a*b*c*d^2*e - a^2*b*e^3 + (a*b^2 + 2*a^2*c)*d*e^2)*g + ((2*c^3*d^3 -
 3*b*c^2*d^2*e - a*b*c*e^3 + (b^2*c + 2*a*c^2)*d*e^2)*f - (b*c^2*d^3 + 3*a*b*c*d*e^2 - 2*a^2*c*e^3 - (b^2*c +
2*a*c^2)*d^2*e)*g)*x))/((a*b^2*c^2 - 4*a^2*c^3)*d^4 - 2*(a*b^3*c - 4*a^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c -
 8*a^3*c^2)*d^2*e^2 - 2*(a^2*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2 - 4*a^4*c)*e^4 + ((b^2*c^3 - 4*a*c^4)*d^4 - 2*(
b^3*c^2 - 4*a*b*c^3)*d^3*e + (b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*c^2)*d*e^3 + (a^
2*b^2*c - 4*a^3*c^2)*e^4)*x^2 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*(b^4*c - 4*a*b^2*c^2)*d^3*e + (b^5 - 2*a*b^3*c
- 8*a^2*b*c^2)*d^2*e^2 - 2*(a*b^4 - 4*a^2*b^2*c)*d*e^3 + (a^2*b^3 - 4*a^3*b*c)*e^4)*x), (((a*b^2 - 4*a^2*c)*e^
2*f - (a*b^2 - 4*a^2*c)*d*e*g + ((b^2*c - 4*a*c^2)*e^2*f - (b^2*c - 4*a*c^2)*d*e*g)*x^2 + ((b^3 - 4*a*b*c)*e^2
*f - (b^3 - 4*a*b*c)*d*e*g)*x)*sqrt(-c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sqrt(-c*d^2 + b*d*e - a*e^2)*sqrt(c*x^
2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x)/(a*c*d^2 - a*b*d*e + a^2*e^2 + (c^2*d^2 - b*c*d*e + a*c*e^2)*x^2
+ (b*c*d^2 - b^2*d*e + a*b*e^2)*x)) - 2*sqrt(c*x^2 + b*x + a)*((b*c^2*d^3 - 2*(b^2*c - a*c^2)*d^2*e + (b^3 - a
*b*c)*d*e^2 - (a*b^2 - 2*a^2*c)*e^3)*f - (2*a*c^2*d^3 - 3*a*b*c*d^2*e - a^2*b*e^3 + (a*b^2 + 2*a^2*c)*d*e^2)*g
 + ((2*c^3*d^3 - 3*b*c^2*d^2*e - a*b*c*e^3 + (b^2*c + 2*a*c^2)*d*e^2)*f - (b*c^2*d^3 + 3*a*b*c*d*e^2 - 2*a^2*c
*e^3 - (b^2*c + 2*a*c^2)*d^2*e)*g)*x))/((a*b^2*c^2 - 4*a^2*c^3)*d^4 - 2*(a*b^3*c - 4*a^2*b*c^2)*d^3*e + (a*b^4
 - 2*a^2*b^2*c - 8*a^3*c^2)*d^2*e^2 - 2*(a^2*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2 - 4*a^4*c)*e^4 + ((b^2*c^3 - 4*
a*c^4)*d^4 - 2*(b^3*c^2 - 4*a*b*c^3)*d^3*e + (b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*
c^2)*d*e^3 + (a^2*b^2*c - 4*a^3*c^2)*e^4)*x^2 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*(b^4*c - 4*a*b^2*c^2)*d^3*e + (
b^5 - 2*a*b^3*c - 8*a^2*b*c^2)*d^2*e^2 - 2*(a*b^4 - 4*a^2*b^2*c)*d*e^3 + (a^2*b^3 - 4*a^3*b*c)*e^4)*x)]

Sympy [F]

\[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=\int \frac {f + g x}{\left (d + e x\right ) \left (a + b x + c x^{2}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral((f + g*x)/((d + e*x)*(a + b*x + c*x**2)**(3/2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume((b/e-(2*c*d)/e^2)^2>0)', see `
assume?` for

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 583 vs. \(2 (177) = 354\).

Time = 0.29 (sec) , antiderivative size = 583, normalized size of antiderivative = 3.12 \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \, {\left (\frac {{\left (2 \, c^{3} d^{3} f - 3 \, b c^{2} d^{2} e f + b^{2} c d e^{2} f + 2 \, a c^{2} d e^{2} f - a b c e^{3} f - b c^{2} d^{3} g + b^{2} c d^{2} e g + 2 \, a c^{2} d^{2} e g - 3 \, a b c d e^{2} g + 2 \, a^{2} c e^{3} g\right )} x}{b^{2} c^{2} d^{4} - 4 \, a c^{3} d^{4} - 2 \, b^{3} c d^{3} e + 8 \, a b c^{2} d^{3} e + b^{4} d^{2} e^{2} - 2 \, a b^{2} c d^{2} e^{2} - 8 \, a^{2} c^{2} d^{2} e^{2} - 2 \, a b^{3} d e^{3} + 8 \, a^{2} b c d e^{3} + a^{2} b^{2} e^{4} - 4 \, a^{3} c e^{4}} + \frac {b c^{2} d^{3} f - 2 \, b^{2} c d^{2} e f + 2 \, a c^{2} d^{2} e f + b^{3} d e^{2} f - a b c d e^{2} f - a b^{2} e^{3} f + 2 \, a^{2} c e^{3} f - 2 \, a c^{2} d^{3} g + 3 \, a b c d^{2} e g - a b^{2} d e^{2} g - 2 \, a^{2} c d e^{2} g + a^{2} b e^{3} g}{b^{2} c^{2} d^{4} - 4 \, a c^{3} d^{4} - 2 \, b^{3} c d^{3} e + 8 \, a b c^{2} d^{3} e + b^{4} d^{2} e^{2} - 2 \, a b^{2} c d^{2} e^{2} - 8 \, a^{2} c^{2} d^{2} e^{2} - 2 \, a b^{3} d e^{3} + 8 \, a^{2} b c d e^{3} + a^{2} b^{2} e^{4} - 4 \, a^{3} c e^{4}}\right )}}{\sqrt {c x^{2} + b x + a}} + \frac {2 \, {\left (e^{2} f - d e g\right )} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e - a e^{2}}}\right )}{{\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c d^{2} + b d e - a e^{2}}} \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

-2*((2*c^3*d^3*f - 3*b*c^2*d^2*e*f + b^2*c*d*e^2*f + 2*a*c^2*d*e^2*f - a*b*c*e^3*f - b*c^2*d^3*g + b^2*c*d^2*e
*g + 2*a*c^2*d^2*e*g - 3*a*b*c*d*e^2*g + 2*a^2*c*e^3*g)*x/(b^2*c^2*d^4 - 4*a*c^3*d^4 - 2*b^3*c*d^3*e + 8*a*b*c
^2*d^3*e + b^4*d^2*e^2 - 2*a*b^2*c*d^2*e^2 - 8*a^2*c^2*d^2*e^2 - 2*a*b^3*d*e^3 + 8*a^2*b*c*d*e^3 + a^2*b^2*e^4
 - 4*a^3*c*e^4) + (b*c^2*d^3*f - 2*b^2*c*d^2*e*f + 2*a*c^2*d^2*e*f + b^3*d*e^2*f - a*b*c*d*e^2*f - a*b^2*e^3*f
 + 2*a^2*c*e^3*f - 2*a*c^2*d^3*g + 3*a*b*c*d^2*e*g - a*b^2*d*e^2*g - 2*a^2*c*d*e^2*g + a^2*b*e^3*g)/(b^2*c^2*d
^4 - 4*a*c^3*d^4 - 2*b^3*c*d^3*e + 8*a*b*c^2*d^3*e + b^4*d^2*e^2 - 2*a*b^2*c*d^2*e^2 - 8*a^2*c^2*d^2*e^2 - 2*a
*b^3*d*e^3 + 8*a^2*b*c*d*e^3 + a^2*b^2*e^4 - 4*a^3*c*e^4))/sqrt(c*x^2 + b*x + a) + 2*(e^2*f - d*e*g)*arctan(-(
(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e - a*e^2))/((c*d^2 - b*d*e + a*e^2)*sqrt
(-c*d^2 + b*d*e - a*e^2))

Mupad [F(-1)]

Timed out. \[ \int \frac {f+g x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx=\int \frac {f+g\,x}{\left (d+e\,x\right )\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \]

[In]

int((f + g*x)/((d + e*x)*(a + b*x + c*x^2)^(3/2)),x)

[Out]

int((f + g*x)/((d + e*x)*(a + b*x + c*x^2)^(3/2)), x)